Hannestad : Can Dust Segregation Mimic a Cosmological Constant ?

نویسنده

  • T. Simonsen
چکیده

Recent measurements of type Ia supernovae indicate that distant supernovae are substantially fainter than expected from the standard flat cold dark matter model. One possible explanation is that the energy density in our universe is in fact dominated by a cosmological constant. Another possible solution is that there are large amounts of grey dust in the intergalactic medium. Dust grains can be grey either because they are non-spherical or very large. We have numerically investigated whether grey dust can be emitted from high redshift galaxies without also emitting standard, reddening dust, which would have been visible in the spectra of high redshift objects. Our finding is that grain velocities are almost independent of ellipticity so that if greyness are due to the grains being elongated, it will not be possible to separate grey dust from ordinary dust. We also find that velocities are fairly independent of grain size, but we cannot rule out possible sputtering of small grains, so that large, grey dust grains could be preferentially emitted. Therefore, our conclusion is that grey dust is an unlikely explanation of the data, but we cannot rule it out if the grey dust consists of large, spherical grains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supernovae Ia observations in the Lemâitre–Tolman model

The observation of distant supernovae shows that the light of supernovae Ia is dimmer than it would be in a decelerating Universe. Several effects might be responsible for this phenomenon: cosmological constant, evolution of supernovae, selection bias, gravitational lensing, intergalactic dust, and influence of inhomogeneous distribution of matter on light propagation. All these effects but the...

متن کامل

Supernova Ia observations in the Lemâitre–Tolman model

Observations of distant supernovae show that the light of supernovae Ia is dimmer than it would be in a decelerating universe. Several effects might be responsible for this phenomenon: cosmological constant, evolution of supernovae, selection bias, gravitational lensing, intergalactic dust, and influence of inhomogeneous distribution of matter on light propagation. All of these effects but the ...

متن کامل

Spacetimes admitting quasi-conformal curvature tensor

‎The object of the present paper is to study spacetimes admitting‎ ‎quasi-conformal curvature tensor‎. ‎At first we prove that a quasi-conformally flat spacetime is Einstein‎ ‎and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying‎ ‎Einstein's field equation with cosmological constant is covariant constant‎. ‎Next‎, ‎we prove that if the perfect flui...

متن کامل

Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound.

At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m...

متن کامل

جوابهای کیهانشناسی معادلات برانس- دیکی با ثابت کیهانشناسی

  In this paper, the analytical solutions of Brans-Dicke (B-D) equations with cosmological constant are presented, in which the equation of state of the universe is P=mÙ° ρ , under the assumption φRn=c between the B-D field and the scale factor of the universe. The flat (K=0) Robertson- Walker metric has been considered for the metric of the universe. These solutions are rich in the sense that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008